Data Enrichment in Fine-Grained Classification of Aquatic Macroinvertebrates

Jenni Raitoharju*, Ekaterina Riabchenko*, **Kristian Meissner**[†], Iftikhar Ahmad*, Alexandros Iosifidis*, Moncef Gabbouj* and Serkan Kiranyaz[§]

*Dept. of Signal Processing, Tampere University of Technology, Finland ***Fresh Water Centre, Finnish Environment Institute SYKE, Jyväskylä, Finland** *Department of Electrical Engineering, Qatar University, Doha, Qatar

Marine Imaging Workshop Kiel 2017

What is the need for "bug" identification?

 Used as indicators in mandatory aquatic biomonitoring (e.g. EU-WFD / MSD)
 High number of taxa to be identified (classes)
 Lot of human expert cost/time needed to classify
 Less human experts available
 Biomonitoring currently suffers from budget cuts

- The standard image classification pipeline is based on engineered features, e.g. SIFT, HOG, etc.
- Baseline image classification for the approach using engineered features:
 - Image description
 - Image representation
 - Image classification

Image Classification using Deep Nets

Combined model for:

- Image description
- ➤ Image representation
- Image classification
- The parameters of all processing steps are optimized for the specific task at hand

Experimental Setup

Data collection

Experimental Setup

Pre-processing

Experimental Setup

Multi-class classification: 29 classes

Challenges: High intra-class variations Low inter-class variations

Class 5

Class 1

		0.1
#	Macroinvertebrate taxon	Orig. no.
		of images
1	Ameletus inopinatus	343
2	Asellus aquaticus	447
3	Atherix ibis	230
5	Baetis niger	455
4	Baetis rhodani	468
6	Ceratopogonidae	322
7	Dicranota sp.	367
8	Elmis aenea	468
9	Elmis aenea adult	378
10	Ephemerella aroni (aurivillii)	577
11	Habrophlebia sp.	458
12	Hemerodromia sp.	280
13	Heptagenia dalecarlica	409
14	Hydraena adult	436
15	Isoperla sp.	460
16	Itytrichia lamellaris	428
17	Leptophlebia sp.	480
18	Leuctra sp.	378
19	Limnius volckmari adult	395
20	Micrasema gelidum	417
21	Micrasema setiferum	372
22	Nemoura sp.	414
23	Oulimnius tuberculatus	465
24	Oxyethira sp.	438
25	Philopotamus montanus	330
26	Psychodiidae	408
27	Protonemura sp.	387
28	Simuliidae	418
29	Taeniopteryx nebulosa	404

Image Classification using Deep Nets

AlexNet model

SYKE

Data enrichment

- Data enrichment approaches have been shown to enhance the performance of classification schemes due to:
 - They provide examples that might appear in the evaluation phase
 - They provide a larger dataset that can be used in order to better estimate the parameters of the classification model (especially in neural networks having an enormous number of parameters)

Data enrichment

> We have used two types of enrichment:

- Horizontal and vertical flipping
- > Rotation with random angles

#	Macroinvertebrate taxon	Orig. no.	Expansion		
		of images	factor		
1	Ameletus inopinatus	343	5		
2	Asellus aquaticus	447	4		
3	Atherix ibis	230	8		
5	Baetis niger	455	4		
4	Baetis rhodani	468	4		
6	Ceratopogonidae	322	5		
7	Dicranota sp.	367	67 5		
8	Elmis aenea	468	4		
9	Elmis aenea adult	378	4		
10	Ephemerella aroni (aurivillii)	577	3		
11	Habrophlebia sp.	458	4		
12	Hemerodromia sp.	280	7		
13	Heptagenia dalecarlica	409	4		
14	Hydraena adult	436	4		
15	Isoperla sp.	460	4		
16	Itytrichia lamellaris	428	4		
17	Leptophlebia sp.	480	4		
18	Leuctra sp.	378	5		
19	Limnius volckmari adult	395	4		
20	Micrasema gelidum	417	4		
21	Micrasema setiferum	372	5		
22	Nemoura sp.	414	4		
23	Oulimnius tuberculatus	465	4		
24	Oxyethira sp.	438	4		
25	Philopotamus montanus	330	5		
26	Psychodiidae	408	4		
27	Protonemura sp.	387	5		
28	Simuliidae	418	4		
29	Taeniopteryx nebulosa	404	4		

Experiments

> We applied ten experiments:

- On each experiment we split each class in 50% training, 20% validation and 30% test samples
- We measure the performance of each method using classification rate metric
- We report the mean classification rate and the corresponding standard deviation over all ten experiments

Experiments

≻ Results:

	MatConvNet		Caffe		Caffe j	Caffe pretrained	
#	orig.	enriched	orig.*	enriched	orig.*	enriched	
1	81.28	84.27	77.41	79.44	85.36	88.27	
2	77.58	86.95	77.47	80.98	86.35	89.04	
3	80.15	86.07	75.93	80.87	86.13	87.83	
4	77.19	85.53	74.56	80.43	84.76	88.65	
5	81.20	85.47	79.06	82.02	86.13	88.65	
6	78.56	85.53	77.69	80.48	85.42	88.27	
7	79.22	85.53	76.97	78.84	86.02	88.32	
8	80.92	84.81	76.70	79.99	85.47	89.09	
9	76.48	84.76	76.26	80.26	84.38	87.99	
10	78.84	85.31	77.69	81.47	86.40	89.31	
avg	79.14	85.42	76.97	80.48	85.64	88.54	
std	1.72	0.74	1.22	0.93	0.69	0.49	

How do those results compare to professionals?

Summary

Achieved error rates are acceptable and within the range of those for human experts in proficiency tests

Data enrichment enhances performance
Pretrained networks work better

Next step: ➤ 126 class data set

Thank you!

ACKNOWLEDGMENT

The authors would like to thank the Academy of Finland for the grants no. 288584, 289076 and 289104 funding the DETECT consortium's project (Advanced Computational and Statistical Techniques for Biomonitoring and Aquatic Ecosystem Service Management).

